Recently integrated Alu retrotransposons are essentially neutral residents of the human genome.
نویسندگان
چکیده
Alu elements represent the largest family of human mobile elements in copy number. A controversial issue with implications for both Alu biology and human genome evolution is whether selective pressures are affecting Alu elements on a large scale. To address this issue, we analyzed the genomic distribution of the three youngest known human Alu subfamilies (Ya5a2, Ya8 and Yb9) in conjunction with their insertion polymorphism status in the human population, since selection can only act on polymorphic elements. Our results indicate that: (i) polymorphic and fixed recently integrated Alu elements are found in genomic regions whose GC contents are statistically indistinguishable, and (ii) recently integrated Alu elements are inserted randomly, regardless of the GC content of the surrounding genomic DNA. These results provide strong evidence that recently integrated "young" Alu elements are not subject to positive or negative selection on a large scale. Therefore, young Alu elements can be regarded as essentially neutral residents of the human genome. These results also imply that selective processes specifically targeting Alu elements can be ruled out as explanations for the accumulation of Alu elements in GC-rich regions of the human genome.
منابع مشابه
Duplication, coclustering, and selection of human Alu retrotransposons.
Alu and L1 are families of non-LTR retrotransposons representing approximately equal 30% of the human genome. Genomic distributions of young Alu and L1 elements are quite similar, but over time, Alu densities in GC-rich DNA increase in comparison with L1 densities. Here we analyze two processes that may contribute to this phenomenon. First, DNA duplications in the human genome occur more freque...
متن کاملAn alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair.
The Alu family is a highly successful group of non-LTR retrotransposons ubiquitously found in primate genomes. Similar to the L1 retrotransposon family, Alu elements integrate primarily through an endonuclease-dependent mechanism termed target site-primed reverse transcription (TPRT). Recent studies have suggested that, in addition to TPRT, L1 elements occasionally utilize an alternative endonu...
متن کاملActive Alu retrotransposons in the human genome.
Alu retrotransposons evolved from 7SL RNA approximately 65 million years ago and underwent several rounds of massive expansion in primate genomes. Consequently, the human genome currently harbors 1.1 million Alu copies. Some of these copies remain actively mobile and continue to produce both genetic variation and diseases by "jumping" to new genomic locations. However, it is unclear how many ac...
متن کاملdbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans.
Retrotransposons constitute over 40% of the human genome and play important roles in the evolution of the genome. Since certain types of retrotransposons, particularly members of the Alu, L1, and SVA families, are still active, their recent and ongoing propagation generates a unique and important class of human genomic diversity/polymorphism (for the presence and absence of an insertion) with s...
متن کاملNon-LTR retrotransposons and microsatellites
The human genome is laden with both non-LTR (long-terminal repeat) retrotransposons and microsatellite repeats. Both types of sequences are able to, either actively or passively, mutagenize the genomes of human individuals and are therefore poised to dynamically alter the human genomic landscape across generations. Non-LTR retrotransposons, such as L1 and Alu, are a major source of new microsat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 373 شماره
صفحات -
تاریخ انتشار 2006